Simulations¶
Independence Simulations¶
-
hyppo.sims.
linear
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate linear data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Linear \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):
\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= w^T X + \kappa \epsilon\end{split}\]Examples
>>> from hyppo.sims import linear >>> x, y = linear(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
exponential
(n, p, noise=False, low=0, high=3)[source]¶ Simulates univariate or multivariate exponential data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: 0)
The lower limit of the uniform distribution simulated from.
high : float, (default: 3)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Exponential \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):
\[\begin{split}X &\sim \mathcal{U}(0, 3)^p \\ Y &= \exp (w^T X) + 10 \kappa \epsilon\end{split}\]Examples
>>> from hyppo.sims import exponential >>> x, y = exponential(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
cubic
(n, p, noise=False, low=-1, high=1, cubs=[-12, 48, 128], scale=0.3333333333333333)[source]¶ Simulates univariate or multivariate cubic data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
cubs : list of ints (default: [-12, 48, 128])
Coefficients of the cubic function where each value corresponds to the order of the cubic polynomial.
scale : float (default: 1/3)
Scaling center of the cubic.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Cubic \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):
\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= 128 \left( w^T X - \frac{1}{3} \right)^3 + 48 \left( w^T X - \frac{1}{3} \right)^2 - 12 \left( w^T X - \frac{1}{3} \right) + 80 \kappa \epsilon\end{split}\]Examples
>>> from hyppo.sims import cubic >>> x, y = cubic(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
joint_normal
(n, p, noise=False)[source]¶ Simulates univariate or multivariate joint-normal data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Joint Normal \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): Let \(\rho = \frac{1}{2} p\), \(I_p\) be the identity matrix of size \(p \times p\), \(J_p\) be the matrix of ones of size \(p \times p\) and \(\Sigma = \begin{bmatrix} I_p & \rho J_p \\ \rho J_p & (1 + 0.5\kappa) I_p \end{bmatrix}\). Then,
\[(X, Y) \sim \mathcal{N}(0, \Sigma)\]Examples
>>> from hyppo.sims import joint_normal >>> x, y = joint_normal(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
step
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate step data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Step \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):
\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= \mathbb{1}_{w^T X > 0} + \epsilon\end{split}\]where \(\mathbb{1}\) is the indicator function.
Examples
>>> from hyppo.sims import step >>> x, y = step(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
quadratic
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate quadratic data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Quadratic \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):
\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= (w^T X)^2 + 0.5 \kappa \epsilon\end{split}\]Examples
>>> from hyppo.sims import quadratic >>> x, y = quadratic(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
w_shaped
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate quadratic data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
W-Shaped \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\): \(\mathcal{U}(-1, 1)^p\),
\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= \left[ \left( (w^T X)^2 - \frac{1}{2} \right)^2 + \frac{w^T U}{500} \right] + 0.5 \kappa \epsilon\end{split}\]Examples
>>> from hyppo.sims import w_shaped >>> x, y = w_shaped(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
spiral
(n, p, noise=False, low=0, high=5)[source]¶ Simulates univariate or multivariate spiral data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: 0)
The lower limit of the uniform distribution simulated from.
high : float, (default: 5)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Spiral \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\): \(U \sim \mathcal{U}(0, 5)\), \(\epsilon \sim \mathcal{N}(0, 1)\)
\[\begin{split}X_{|d|} &= U \sin(\pi U) \cos^d(\pi U)\ \mathrm{for}\ d = 1,...,p-1 \\ X_{|p|} &= U \cos^p(\pi U) \\ Y &= U \sin(\pi U) + 0.4 p \epsilon\end{split}\]Examples
>>> from hyppo.sims import spiral >>> x, y = spiral(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
Simulates univariate or multivariate uncorrelated Bernoulli data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
prob : float, (default: 0.5)
The probability of the bernoulli distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Uncorrelated Bernoulli \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\): \(U \sim \mathcal{B}(0.5)\), \(\epsilon_1 \sim \mathcal{N}(0, I_p)\), \(\epsilon_2 \sim \mathcal{N}(0, 1)\),
\[\begin{split}X &= \mathcal{B}(0.5)^p + 0.5 \epsilon_1 \\ Y &= (2U - 1) w^T X + 0.5 \epsilon_2\end{split}\]Examples
>>> from hyppo.sims import uncorrelated_bernoulli >>> x, y = uncorrelated_bernoulli(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
logarithmic
(n, p, noise=False)[source]¶ Simulates univariate or multivariate logarithmic data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Logarithmic \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(\epsilon \sim \mathcal{N}(0, I_p)\),
\[\begin{split}X &\sim \mathcal{N}(0, I_p) \\ Y_{|d|} &= 2 \log_2 (|X_{|d|}|) + 3 \kappa \epsilon_{|d|} \ \mathrm{for}\ d = 1, ..., p\end{split}\]Examples
>>> from hyppo.sims import logarithmic >>> x, y = logarithmic(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
fourth_root
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate fourth root data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Fourth Root \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):
\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= |w^T X|^\frac{1}{4} + \frac{\kappa}{4} \epsilon\end{split}\]Examples
>>> from hyppo.sims import fourth_root >>> x, y = fourth_root(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 1)
-
hyppo.sims.
sin_four_pi
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate sine 4 \(\pi\) data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Sine 4:math:pi \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = 4 \pi\),
\[\begin{split}X_{|d|} &= U + 0.02 p V_{|d|}\ \mathrm{for}\ d = 1, ..., p \\ Y &= \sin (\theta X) + \kappa \epsilon\end{split}\]Examples
>>> from hyppo.sims import sin_four_pi >>> x, y = sin_four_pi(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
sin_sixteen_pi
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate sine 16 \(\pi\) data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Sine 16:math:pi \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = 16 \pi\),
\[\begin{split}X_{|d|} &= U + 0.02 p V_{|d|}\ \mathrm{for}\ d = 1, ..., p \\ Y &= \sin (\theta X) + \kappa \epsilon\end{split}\]Examples
>>> from hyppo.sims import sin_sixteen_pi >>> x, y = sin_sixteen_pi(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
square
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate square data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Square \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = -\frac{\pi}{8}\),
\[\begin{split}X_{|d|} &= U \cos(\theta) + V \sin(\theta) + 0.05 p \epsilon_{|d|}\ \mathrm{for}\ d = 1, ..., p \\ Y_{|d|} &= -U \sin(\theta) + V \cos(\theta)\end{split}\]Examples
>>> from hyppo.sims import square >>> x, y = square(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
two_parabolas
(n, p, noise=False, low=-1, high=1, prob=0.5)[source]¶ Simulates univariate or multivariate two parabolas data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
prob : float, (default: 0.5)
The probability of the bernoulli distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.
Notes
Two Parabolas \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\):
\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= ((w^T X)^2 + 2 \kappa \epsilon) \times \left( U = \frac{1}{2} \right)\end{split}\]Examples
>>> from hyppo.sims import two_parabolas >>> x, y = two_parabolas(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
circle
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate circle data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Circle \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)^p\), \(\epsilon \sim \mathcal{N}(0, I_p)\), \(r = 1\),
\[\begin{split}X_{|d|} &= r \left( \sin(\pi U_{|d+1|}) \prod_{j=1}^d \cos(\pi U_{|j|}) + 0.4 \epsilon_{|d|} \right)\ \mathrm{for}\ d = 1, ..., p-1 \\ X_{|d|} &= r \left( \prod_{j=1}^p \cos(\pi U_{|j|}) + 0.4 \epsilon_{|p|} \right) \\ Y_{|d|} &= \sin(\pi U_{|1|})\end{split}\]Examples
>>> from hyppo.sims import circle >>> x, y = circle(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
ellipse
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate ellipse data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Ellipse \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)^p\), \(\epsilon \sim \mathcal{N}(0, I_p)\), \(r = 5\),
\[\begin{split}X_{|d|} &= r \left( \sin(\pi U_{|d+1|}) \prod_{j=1}^d \cos(\pi U_{|j|}) + 0.4 \epsilon_{|d|} \right)\ \mathrm{for}\ d = 1, ..., p-1 \\ X_{|d|} &= r \left( \prod_{j=1}^p \cos(\pi U_{|j|}) + 0.4 \epsilon_{|p|} \right) \\ Y_{|d|} &= \sin(\pi U_{|1|})\end{split}\]Examples
>>> from hyppo.sims import ellipse >>> x, y = ellipse(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
diamond
(n, p, noise=False, low=-1, high=1)[source]¶ Simulates univariate or multivariate diamond data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
low : float, (default: -1)
The lower limit of the uniform distribution simulated from.
high : float, (default: -1)
The upper limit of the uniform distribution simulated from.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Diamond \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = -\frac{\pi}{4}\),
\[\begin{split}X_{|d|} &= U \cos(\theta) + V \sin(\theta) + 0.05 p \epsilon_{|d|}\ \mathrm{for}\ d = 1, ..., p \\ Y_{|d|} &= -U \sin(\theta) + V \cos(\theta)\end{split}\]Examples
>>> from hyppo.sims import diamond >>> x, y = diamond(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
multiplicative_noise
(n, p)[source]¶ Simulates univariate or multivariate multiplicative noise data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Multiplicative Noise \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(\U \sim \mathcal{N}(0, I_p)\),
\[\begin{split}X &\sim \mathcal{N}(0, I_p) \\ Y_{|d|} &= U_{|d|} X_{|d|}\ \mathrm{for}\ d = 1, ..., p\end{split}\]Examples
>>> from hyppo.sims import multiplicative_noise >>> x, y = multiplicative_noise(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
multimodal_independence
(n, p, prob=0.5, sep1=3, sep2=2)[source]¶ Simulates univariate or multimodal independence data.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
prob : float, (default: 0.5)
The probability of the bernoulli distribution simulated from.
sep1, sep2: float, (default: 3, 2)
The separation between clusters of normally distributed data.
Returns: x, y : ndarray
Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.
Notes
Multimodal Independence \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{N}(0, I_p)\), \(V \sim \mathcal{N}(0, I_p)\), \(U^\prime \sim \mathcal{B}(0.5)^p\), \(V^\prime \sim \mathcal{B}(0.5)^p\),
\[\begin{split}X &= \frac{U}{3} + 2 U^\prime - 1 \\ Y &= \frac{V}{3} + 2 V^\prime - 1\end{split}\]Examples
>>> from hyppo.sims import multimodal_independence >>> x, y = multimodal_independence(100, 2) >>> print(x.shape, y.shape) (100, 2) (100, 2)
K-Sample Simulations¶
-
hyppo.sims.
rot_2samp
(sim, n, p, noise=True, degree=90)[source]¶ Rotates input simulations to produce a 2-sample simulation.
Parameters: sim : callable()
The simulation (from the
hyppo.sims
module) that is to be rotated.n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: True)
Whether or not to include noise in the simulation.
degree : float, (default: 90)
The number of degrees to rotate the input simulation by (in first dimension).
Returns: samp1, samp2 : ndarray
Rotated data matrices. samp1 and samp2 have shapes (n, p+1) and (n, p+1) or (n, 2p) and (n, 2p) depending on the independence simulation. Here, n is the number of samples and p is the number of dimensions.
Examples
>>> from hyppo.sims import rot_2samp, linear >>> x, y = rot_2samp(linear, 100, 1) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
trans_2samp
(sim, n, p, noise=True, degree=90, trans=0.3)[source]¶ Translates and rotates input simulations to produce a 2-sample simulation.
Parameters: n : int
The number of samples desired by the simulation.
p : int
The number of dimensions desired by the simulation.
noise : bool, (default: False)
Whether or not to include noise in the simulation.
degree : float, (default: 90)
The number of degrees to rotate the input simulation by (in first dimension).
trans : float, (default: 0.3)
The amount to translate the second simulation by (in first dimension).
Returns: samp1, samp2 : ndarray
Translated/rotated data matrices. samp1 and samp2 have shapes (n, p+1) and (n, p+1) or (n, 2p) and (n, 2p) depending on the independence simulation. Here, n is the number of samples and p is the number of dimensions.
Examples
>>> from hyppo.sims import trans_2samp, linear >>> x, y = trans_2samp(linear, 100, 1) >>> print(x.shape, y.shape) (100, 2) (100, 2)
-
hyppo.sims.
gaussian_3samp
(n, epsilon=1, weight=0, case=1)[source]¶ Generates 3 sample of gaussians corresponding to 5 cases.
Parameters: n : int
The number of samples desired by the simulation.
epsilon : float, (default: 1)
The amount to translate simulation by (amount depends on case).
weight : float, (default: False)
Number between 0 and 1 corresponding to weight of the second Gaussian (used in case 4 and 5 to produce a mixture of Gaussians)
case : {1, 2, 3, 4, 5}, (default: 1)
The case in which to evaluate statistical power for each test.
Returns: sims : list of ndarray
List of 3 2-dimensional multivariate Gaussian each corresponding to the desired case.
Examples
>>> from hyppo.sims import gaussian_3samp >>> sims = gaussian_3samp(100) >>> print(sims[0].shape, sims[1].shape, sims[2].shape) (100, 2) (100, 2) (100, 2)